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ABSTRACT

Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 °C (4000
°F) were successfully measured using a fluid oscillator. The current program, although limited in
scope, explores the problem areas which must be solved if this technique is to be extended to
10,000 °R. The potential for measuring extremely high temperatures, using fluid oscillator
techniques, stems from the fact that the measuring element is the fluid itself. The containing
structure of the oscillator need not be brought to equilibrium temperature with the fluid for
temperature measurement, provided that a suitable calibration can be arranged. This program
concentrated on review of high-temperature material developments since the original program was
completed. Other areas of limited study included related pressure instrumentation requirements,

dissociation, rarefied gas effects, and analysis of sensor time response.

NOMENCLATURE
°C degrees Centigrade
C* constant in thermal response calculation (defined in text)
C, specific heat of a gas at constant pressure
C, specific heat of a gas at constant volume
°F degrees Fahrenheit
K Knudsen number
K* constant in thermal response calculation (defined in text)
M Mach number
°R degrees Rankine
Re Reynolds number
T temperature
a speed of sound
d a characteristic dimension
e base of natural logarithms
P pressure
t time
Y ratio of specific heats, C p/Cv
A mean free molecular path
p gas density
T time constant
V! gas viscosity



Subscripts

0 free-stream conditions

2 conditions behind normal shock

in characteristic of gas entering temperature sensor

m characteristic of gas inside temperature sensor

t total (pressure, temperature)
INTRODUCTION

This program is, in a sense, a continuation of NASA effort begun more than 25 years ago. At that
time, interests within NASA saw need for a temperature sensor to measure very high total
temperatures in compressible gases. NASA Dryden sponsored a program with Honeywell Inc.
which produced instrumentation, based on fluidic techniques, capable of measuring to a level of
2200 °C (4000 °F). For a more complete introduction to the current program a short history of the
carlier NASA program is included as Appendix A.

The current program focused on the problems to be solved if this technology is to be taken to
temperatures of approximately 5500 °C (10,000 °F). The most difficult area is that of material
followed closely by the pressure transducer technology required to get pressure pulse signal out of
the fluidic other concerns, regarding dissociation and continuum flows in rarefied environments,
were explored by a limited analysis.

SUMMARY

The fluid temperature sensor is unique in that, for gaseous fluids, the fluid itself is the measuring
element. As a result it is not necessary for any solid material to be brought to ultra high
temperatures to accomplish a measurement. The oscillation frequency of a fluid oscillator is very
nearly a linear function of the square root of the absolute temperature of the gas flowing through
it. In the mid-1960s, NASA sponsored a development program which successfully measured air
temperatures of 2200 °C (4000 °F) using this technology. The current program explored major
questions relative to applying this technique to measure temperatures of 5538 °C (10,000 °F).
Measurement of temperatures of this magnitude may be possible because the temperature gradient
between the flowing fluid and survivable material temperatures is accomplished across the
boundary layer of the gas.

The major objectives of this program as defined in the statement of work were:

* Define NASA areas of application for measuring ultra- high temperatures as a guide for
developing a design specification

* Review progress in the development of materials for use at high temperatures

* Review developments in the field of high temperature, high frequency pressure
transducers

* Explore effect of dissociation and rarefied gas effects on performance of the fluid
temperature sensor



* Define potential sources for fabricating experimental temperature sensor.

NASA requirements for an ultra-high temperature sensor were explored during discussions with
research personnel at Ames and at Dryden. The nature of research at both facilities demands that
materials and technology chosen for an advanced capability temperature sensor must be capable of
operation in an oxidizing environment. There was common interest in the rapid time response that
is characteristic of the fluid temperature sensor. While measuring capability to 2500 °C (4500 °F)
is adequate for materials research, re-entry instrumentation needs a 10,000 °R capability. Mach 10
in a standard atmosphere produces total temperatures in the 8,000-10,000 °R range. Considering
other potential applications in the propulsion field, all NASA users work in an oxidizing
atmosphere.

Materials for fabricating a 10,000 °R sensor are a difficult problem. Carbon/carbon is an attractive
but disappointing option. While carbon increases in strength to temperatures of approximately
2200 °C (4000 °F), it begins to vaporize at about 425 °C (800 °F). Some refer to it as “frozen
smoke.” The structural properties of carbon/carbon have spurred a great deal of work on protective
coatings but no really successful coating has been developed for the oxidizing, thermal cycling
environment required for temperature sensor applications.

Ceramic matrix composites present even more complex problems. The conventional
considerations of strength, fatigue, bending modulus and creep resistance remain important. In
addition, thermochemical compatibility between the ceramic matrix material and the reinforcing
fibers comes into play. Because of the rigors of an oxidizing environment, most non-oxide
materials require oxide protection systems as with carbon, especially after microcracking begins in
the matrix material. As a practical matter, because of oxidation problems, potentially useful
ceramics for temperature sensor fabrication are mainly limited to oxide/oxide (oxide reinforcing
fibers in an oxide matrix) composites.

Pressure transducers with high frequency capability have made limited progress since the earlier
NASA programs. Threshold levels and resolution have been improved. However, high temperature
capability, as required for temperature sensor applications, has receded somewhat. This has
occurred because, by placing emphasis on ease of use, some manufacturers are incorporating
amplifier circuitry into the transducer body. This limits the operating temperature to the capability
imposed by the semiconductor materials rather than the limit of the basic piezoelectric element
(quartz for example). Although basic transducers are still available, the high temperature “special
use” versions used previously are no longer available.

Dissociation effects will become important somewhere in the temperature region of 2800 °C
(5000 °F) and above. A limited analytical study of the dissociative effect was made by comparing
the speed of sound in a gas, with Y = constant and withy computed from tabular values in reference
1, up to 6400 °R. At this temperature, with this data source, no dissociative effects were evident.
More work, with experimentally determined real gas parameters at higher temperatures, is required
to adequately define the dissociative effects.

The Cuyuna Corporation has only limited capability to fabricate and test experimental temperature
sensors. Discussions with several instrumentation manufacturers have determined that one major
manufacturer of airborne total temperature sensors is interested in cooperating with Cuyuna in
developing an advanced version of the basic sensor design. Another large aerospace company has
offered a cooperative effort on material development.



Conclusions

Since transducer technology has not advanced relative to high temperature capability, effective
cooling will be required to get information out of the sensor via pressure sensing techniques.

Material developments have not advanced high temperature materials to a level which will permit
the fabrication of an fluid temperature sensor whose oscillation cavity operates at 5,500 °C
(10,000 °F) without cooling. It may be possible to build a simple, uncooled oscillator cavity for
long term operation up to 1650 °C (3000 °F). For 5-10 hour life in a cycling environment some
materials may allow use of an uncooled cavity to temperatures of approximately 1900-2200 °C
(35004000 °F).

For measurements to 10,000 °F, designs based on refractory metals, having reasonable oxidation
resistance, should be explored. High thermal conductivity combined with efficient cooling of the
oscillator cavity may offer the best hope for an ultra-high temperature sensor based on fluid
techniques.

Recommendations

Reproduce a sensor design developed under the earlier program but using high temperature
materials developed by NASA Ames material developers. Objective: reestablish the technology
base and evaluate fabrication techniques needed for advanced materials.

Design a sensor cavity from a refractory metal and incorporating extensive cooling passages.
Evaluate, by analysis, the feasibility of rejecting enough heat to sustain cavity surfaces to
temperatures below serious oxidation levels. Conduct experimental verification. Objective:
determine the potential for heat transfer techniques to support a 10,000 °F sensor for long term use.

Explore potential materials and fabrication methods with the aerospace firm which has offered to
participate in a cooperative effort. Objective: obtain better, first hand knowledge of material
capability and to determine suitability of various high temperature materials for diffusion bonding.

Begin a search for an oscillation detection technique which overcomes the limitations of pressure
port length and temperature capability imposed by pressure transducers.

APPLICATION AREAS

Discussions with personnel at NASA Dryden Flight Research Facility and NASA Ames Research
Center isolated the following application areas:

Supersonic Flight Test and Research

Atmospheric Reentry Measurements

Propulsion System Measurements

Wind Tunnel Applications (Free Stream and Boundary Layer)
Arc Tunnel Measurements Materials Research

Each of these areas has its own operational environment and related requirements. In general, the
flight research application seeks the highest possible temperature capability while other
measurement capabilities are more restricted and better defined physical constraints. Research



applications can also tolerate more “care and feeding” such as auxiliary cooling and pretest
calibration.

Flight applications carry the usual, well defined, needs for resistance to shock, vibration etc. with
pressure and temperature ranges determined by the flight envelope of the vehicle. For manned
vehicles, the temperature sensor can usually be constructed using the same materials or techniques
as the vehicle itself. Since the sensor is small and has no moving parts, it can be relatively massive
in external configuration giving it ruggedness, strength and thermal mass without adding
significant weight to a flight system. Reentry systems could possibly be designed to survive on
energy sinking techniques relying only on the thermal mass of the instrument. Measurements for
longer flight applications might consider periodic measurements with an extending and retracting
probe with cooling applied during the retracted phase.

Wind tunnel interests expressed a need for high temperature boundary layer profile measurements
which brings consideration of miniaturization and vertical cascades of individual sensors. This
leads to rarefied gas considerations, i.e., the mean free path of the gas molecules relative to the size
of the instrument.

The operating environment is largely oxidizing, whether in the flight atmosphere, the wind tunnel
or in the propulsion setting. This severely restricts the choice of materials and requires that
otherwise promising material candidates, carbon/carbon composites for example, be protected
with oxidation resistant coatings.

RAREFIED GAS EFFECTS

The expressed need for reentry instrumentation and for miniaturized sensors for boundary layer
measurements led to the following limited exploration of real gas effects.

Reentry conditions and flight at very high altitudes is often conducted at high Mach number which
results in extremely high gas temperatures. Typically, at Mach numbers of approximately 6 and
above, so called “real gas effects” come into play. At the related elevated temperatures, molecular
vibration, dissociation and ionization effects become important. A rigorous discussion of these
issues is beyond the scope of this program; however, a limited analysis, dealing with mostly with
low density effects, was conducted for the purpose of shaping the general problem areas. As a
result, conclusions from this analysis should recall the limitations and be used with care.

Calculation of Knudsen Number

The aerodynamic and heat transfer effects encountered in a flow field change when the gas no
longer acts as a continuous medium and the molecular character of the gas becomes important. In
general, this occurs when the mean free path, ¥, of the molecules is of the same order of magnitude
as some characteristic dimension in the system. This condition is sometimes described in terms of
the Knudsen number, K, defined as:

A

d

Knudsen number can be expressed in terms of the more familiar aerodynamic parameters, Mach
number and Reynolds number.
Vdp

and Re = —
vl

M=

<



where:
V = gas velocity
p = gas density
W = gas viscosity.

Combining these relationships with kinetic theory gives:
u=% p A a./8/ny

and

125 Jy M
Re

where 7y is the ratio of the specific heats of the gas.

Dividing the flow regimes in terms of Knudsen number, free molecular flow can be defined as a
Knudsen number exceeding 10 and slip flow as Knudsen numbers of the order of a “few
percent.”’(2)

Application to Fluid Temperature Sensor

Consideration was given to flight conditions within the atmosphere and for Mach numbers from
1.0 to 20.0. The Knudsen number was computed for the fluid temperature sensor using a Reynolds
number based on the size of the total head port of the sensor. A spread sheet was set up to compute
the various intermediate parameters as well as the Knudsen. The standard atmosphere of reference
3 was used in these computations. Because of the wide range of temperatures involved, all the
commonly used “constants” were calculated as a function of temperature. These “constants”
include C,, C,,and Y.

Data for air at elevated temperatures from reference 1 were fitted to polynomials to give the
following expressions for the specific heats of air.
C = 0.24275 - 1.01314E — 04 * T + 1.35025E — 07 * T2
P~ 1-3335989E — 04 * T +4.4793E — 07 * T>-3.105338E — 12 * T°

C = 0.1742 - 7.36565E—05 * T + 1.04694E — 07 * T2
¥ 1-3.0737E — 04 * T+4.457474E — 07 * T? - 3.62076-12 * T

b EB
C,

The total pressure as a function of Mach number is given by:

_ 1
P = Po
1)
-1 -1
{1 +¥ Mz} Y



and the total temperature by:

-1
T, = To[l +Y—2—M2j\

If it is assumed that the temperature sensor inlet will operate behind a normal shock, the following
relationships apply:

Y

—{%uM_.JH s lH

Po [ (y-1)M*+ ™M = (- 1)

To_ [ZYMZ— (- 1)} (=M +2
T, Y+1 (y+1) M?

P, (y+M*
P, (Y- 1)M?+2

_ 2
M,= (y-1HM +2
2 M- (y-1)
The viscosity of air was computed as a function of temperature from the following relationship:

u*10'° = 0317 T°R1'5{___7£'7__}

2 —

(T°R +216)

Atmospheric values for pressure, temperature and density were computed from the equations of
reference 3. Then, using the above expressions, Knudsen numbers were calculated for various
Mach numbers and altitudes. These data and intermediate values of interest are presented in tabular
form in Tables 1-A, 1-B, 1-C, and 1-D for a sensor inlet opening of 0.020".

The data from these tables are plotted in figure 1, showing Knudsen number as a function of
altitude and Mach number. The figure shows that the larger values of Knudsen number occur at the
lower values of Mach number and the data pack very closely for Mach numbers greater thanM =4
or 5. This results from the assumption that the sensor will always operate behind a normal shock.
Inspecting the intermediate data in the tables indicates only minor changes in M, beyond M = 3.
Further, V, and p, conspire to hold the Reynolds number, based on sensor port dimension
(0.020"), remarkably constant.

Based on the foregoing criterion for free molecular flow we see that nowhere in the altitude range
to 200,000 feet and Mach number to 20 does the Knudsen number approach 10. However, the
Knudsen number criterion of “a few percent” is approached for nearly all Mach numbers at
altitudes in excess of 120,000-140,000 feet.
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MATERIAL EXPLORATIONS

A successful ultra-high temperature probe will depend on the proper choice of materials. U.S. Air
Force interest in light weight ceramics for gas turbine engine applications dates to the 1950s.(4) In
1985, the Air Force sponsored work on ceramic composites in support of the Integrated High-
Performance Turbine Engine Technology (IHPTET) initiative. This work, sponsored by Wright
Laboratory, has a goal of developing materials capable of operating at 1650 - 2200 °C (3000 - 4000
°F). Two major areas of exploration have evolved: carbon/carbon composites and ceramic matrix
composites.

Carbon/Carbon Composites

Carbon/carbon has received much research attention in recent years because of its extreme strength
and retention of its structural properties at very high temperatures. The covalent bonds that exist
between arrays of carbon atoms are among the strongest bonds known(5). These bonds are
responsible for carbon’s strength and stiffness. Carbon/carbon composited systems consist of high
strength carbon fibers in a carbon matrix formed by carbonization of an organic binding material
or by deposition of pyrolytic carbon. The resulting material is of high interest for acrospace
structures because, at temperatures above 1000 °C (1830 °F), carbon/carbon’s strength/density
ratio exceeds that of both superalloys and ceramics. Further, in contrast to other materials, its
mechanical strength improves with increasing temperature up to approximately 2200 °C (4000 °F).
Other desirable characteristics include very low thermal expansion in the direction parallel to the
atom layers and a relatively low vapor pressure up to temperatures of nearly 2760 °C (5000 °F).

The primary downside of carbon/carbon is the fact that it oxidizes rapidly at temperatures in excess
of about 425 °C (800 °F). A wide variety of protective coating systems has been devised to
facilitate the use of carbon/carbon at very high temperatures. However, controlling the variable
chemical kinetics of reactions over a wide range of temperatures places sometimes conflicting
requirements on the characteristics of the protective coating systems. Nevertheless, the attractive
structural capability of the base material has spurred extensive research for the “holy grail” of
coatings. The result has been elaborate, multi-layer coating schemes with each layer bringing its
own accompanying difficulties.

The major requirements for a protective system are:

An effective oxidant barrier

An effective barrier to outward diffusion of carbon

Compatible coefficient of thermal expansion

Chemically compatible bonding over the temperature range
Oxidation of Unprotected Carbon/Carbon and Barrier Considerations

The oxidation rate of unprotected carbon/carbon composites increases rapidly (almost
logarithmically) between temperatures of approximately 315 °C (600 °F) and 760 °C (1400 °F).
Above 980 °C (1800 °F), the surface recession rate, while high, is almost constant with increasing

temperature. Three gaseous kinetic regimes determine the rate of oxidation:

Surface reaction limitation
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Limitation due to a mixture of pore diffusion and surface reaction
Limitation due to gas diffusion across the boundary layer

Between 425 °C (800 °F) and 760 °C (1400 °F) the rate of surface reaction is so rapid that the
oxidants combine with the carbon substrate immediately upon crossing the boundary layer. At the
higher temperatures, the rate of oxidation is limited by the ability of the gas phase diffusion to
transport the oxidants. In the high temperature case, nearly all the reaction takes place at the surface
of the structure and the interior is virtually unaffected. At lower temperatures, the kinetics of the
oxidation reaction are much slower than the rate of diffusion of oxidants through the boundary
layer. As a result, oxidants entering the porous carbon/carbon matrix can diffuse deeply into the
substrate material. Thus, any protection system must create an oxidant barrier across a wide range
of temperatures. Silica-based coating systems seem to have the most promise for preventing mass
loss of the carbon/carbon by evaporation.

Coefficient of Thermal Expansion Considerations

Carbon/carbon is a highly unusual material from the standpoint of its thermal expansion properties.
Its anisotropic structure creates a coefficient of thermal expansion (CTE) which is actually negative
along the longitudinal axis of the yarn bundle and positive in the transverse direction. As a result,
a coating which matches the CTE at the surface of the material will be a very poor match at the
edges. The resulting internal stresses can lead to spalling of the coating material. This has special
significance for the fluid temperature because cutting flow contours in the material will open
material edges in areas requiring critical dimensional control. Spalling, with resulting loose
particles, would likely destroy functional capability of the sensor. Some protective systems employ
multiple layers of different materials with gradation of CTE which reduces the interfacial shear
stresses but the tensile stresses which cause cracking remain.

Silicon carbide is the major constituent of many current protective systems because it is chemically
compatible with carbon/carbon at very high temperatures and also an effective barrier to the
outward diffusion of carbon. Although silica-base coatings tend to crack after application due to
CTE differences, these cracks tend to close because the CTE is higher for the coating than the base
material. Further, a SiO; glass forms at the higher temperature and helps to seal the cracks to
prevent ingress of oxygen. The glass is brittle, however, and the cracks reopen again as the system
is cooled. Modification of the carbon/carbon substrate to include silicon carbide tends to increase
the CTE of the substrate. This makes it easier to match the characteristics to the substrate and the
coatings.

The use of borate and phosphate glasses to protect carbon from oxidation has a long history.(5)
Boria base glasses seal cracks and other coating imperfections at the lower temperatures before the
SiO; glass forms. Viscosity reducers may be used to enhance the ability of the glasses to flow into
the cracks. However, the rate of oxygen permeation is roughly proportional to the viscosity of the
glass so the improved crack filling with viscosity reducers comes at the expense of a lowered ability
to prevent oxygen diffusion into the substrate.

A further problem with the boron based glasses is that of reaction with water. Even at low
temperatures, BoOj3 films react with water forming orthoboric acid. At higher temperatures, the
acid releases water vapor, forming bubbles in the coating or worse, the spalling of the surface.
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Various inhibiting techniques have been explored but no totally successful solution has been
isolated.

For a fluid temperature sensor, the cyclic nature of its use is also its Achilles heel. Some of the
above protective systems have some capability of getting protected materials to a high temperature,
and sustaining them there, on a one-time basis. However, some of the layered protection systems
are dissipated in passing through the temperature range and may not be effective for the multiple
excursions required of a practical sensor.

In summary, the silica-base coating systems, using SiC or SizNy, appear to have the ability to
protect against significant carbon mass loss to temperatures of about 1650 °C (3000 °F). Initial
protection by boria glasses begins at about 425 °C (800 °F) and is effective to about 950 °C (1750
°F). Despite all the effort expended in the field, there is no completely competent protective system
for carbon/carbon at ultra high temperatures.

Application of Carbon/Carbon to the Temperature Sensor

In the past, successful temperature sensors have typically involved “two-dimensional” flow
passages (small depth to width ratio) cut into thin plates of the chosen material. If similar designs
were to be built, fabrication of a temperature sensor from carbon/carbon requires several steps:

Formation of wafers approximately 0.020 - 0.060 of an inch thick

Cutting accurate outlines of the sensor in a wafer or cavities closed on one side in thicker
material

+ Closing the cavity with one or two cover plates depending on the design technique chosen

Fastening the cover plates on the contoured layer by a bonding technique not yet
determined.

In addition to the high temperature capability of carbon/carbon, the strength of the material is of
interest for temperature sensor applications. The goal of a 10,000 °R sensor requires cooling of the
sensor body and the resulting temperature gradients will induce high internal stresses in any
material used. In contrast to homogeneous materials, carbon/carbon is anisotropic, displaying
much greater strength in the direction of the reinforcing fibers than across fiber layers. This
weakness has been addressed by material manufacturers who weave what are termed multi-
dimensional materials. Unlike simple woven cloth-like reinforcing materials, these materials have
contiguous fibers in many directions and approach isotropy in physical and mechanical
characteristics. The figures below illustrate these multi-dimensional reinforcement techniques.

Cutting the internal contours of the fluid passages creates a special problem for these anisotropic
carbon/carbon structures. Although the individual layers used in fabricating a temperature sensor
can be formed from multi-dimensional blocks of carbon/carbon, the internal passages will
necessarily interrupt the continuous fibers and compromise the structural integrity of the individual
layers.

Joining the individual layers of a sensor is a further problem in the fabrication of a carbon/carbon
temperature sensor. Most joining of load-carrying structures has used mechanical means, i.e.,
carbon/carbon bolts. This does not appear practical for the small parts used in temperature sensor.
We have encountered some indications that there is research work in progress using eutectics of
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some sort, but the eutectics are acknowledged to be less structurally capable than the base material.
No literature citations of carbon/carbon bonding were encountered.

The details of fabricating a temperature sensor from carbon/ carbon were discussed with Fiber
Materials Inc. of Biddeford, Maine, a manufacturer of carbon/carbon recommended by Wright
Laboratory personnel. In general, Fiber Materials was pessimistic about the use of carbon/carbon
in the operational environment required by a practical temperature sensor. In particular, the cyclic

.

nature of flight and wind tunnel testing is not compatible with carbon/carbon protection systems.
Ceramic Matrix Composites

The ability of ceramics to survive ultra-high temperatures makes them attractive to designers of
gas turbines and other high temperature systems. When using a brittle material in a structural
application, however, some means must be found for achieving tolerance to thermal shock, rapid
fracture and potential impact damage. Ceramic matrix composite materials are fundamentally a
method of alleviating the brittle fracture characteristics of ceramics. They are engineered, two-
phase systems consisting of ceramic fibers, whiskers platelets or oriented particulates in a ceramic

matrix.
Toughness Considerations

A temperature sensor will be exposed to cyclic high temperature operation. While a temperature
sensor will not be subjected to the high centrifugal loads as encountered by some gas turbine
components, the repetitive thermal strains will initiate microcracking in the ceramic matrix. This
microcracking is controlled by flaws in the matrix such as pores and inclusions and by the
reinforcing fibers, whiskers and platelets.

For the reinforcing fibers to accomplish this failure control function, the bond between the fiber
and the matrix must meet carefully controlled conditions. First, the matrix and the reinforcing fiber
must be thermochemically compatible. In addition, the fiber/matrix bond cannot be overly strong.
If the bond is very strong, the material is likely to fracture catastrophically in a manner similar to
the matrix material. If the interface bond is less strong, cracks do not readily propagate from one
material phase into the other and the bulk material will tend to resist crack growth.

After microstructure cracking, the reinforcing fibers impart toughness to the structure through two
mechanisms. Fibers by-passed by the crack planes pick up the loads shed by the matrix and fibers
broken some distance from the crack planes resist opening of the crack due to frictional forces as
the broken ends pull out of the matrix material. After initial cracking, the reinforcing fiber becomes
vulnerable to oxidation and other environmental effects, as discussed in the section on carbon/
carbon.

A generalized stress/deflection curve is shown in Figure 5.

The load/deflection curves for a typical ceramic matrix material are characterized by an initial
inelastic region and, with increasing load, a nonlinear load increase to some maximum value
followed by a continuous load decrease. This noncatastrophic decrease in load gives fiber-
reinforced ceramics the appearance of toughness.
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Apparent
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Figure 5. Load Deflection Behavior of Fiber-reinforced Ceramic Matrix Composites (From
Reference 4)

Unlike structural alloys, the work of fracture (the area under the above curve) does not provide a
means of predicting failure of the material independent of loading considerations. Comparisons of
stress/deflection curves show large differences from sample to sample so analytical models are
difficult to construct. Failure prediction from a representative sample of material is not currently
possible. As a result, failure prediction for ceramics and ceramic matrix materials must often resort
to statistical methods.

Creep Resistance

In general, creep resistance is not likely to be a major factor in choosing a temperature sensor
material. The temperature sensor will not be subjected to rotational forces and certain other design
factors will keep the unit stress levels relatively low except for thermally induced stresses. As in
the discussion of toughness, creep behavior of a material is difficult to predict but fiber volume and
fiber aspect ratio are thought to be of dominant importance.

As with metallic systems, creep considerations are important primarily at high temperatures.
Similar to toughness calculations, computational prediction of creep involves several assumptions
and the results are not totally satisfactory at this time. Typically, analytical considerations assume
that the matrix and fiber are creeping at the same rate and that there is no interfacial slippage
between the matrix and the reinforcing fiber. Experimentally, the performance of single crystal
reinforcing fibers is significantly better than that of polycrystalline fibers. Load transfer from the
matrix to the fiber is fairly constant after the fiber volume reaches 30%.
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Fatigue

Time-dependent loss of strength and ultimate failure of ceramics involves entirely different
mechanisms than those which occur in metals and alloys. In the latter, fatigue cracks are initiated
in regions of high strain concentration which may arise from flaws in the material, from improper
design or poor manufacturing execution of a design detail. In studies of crack propagation in
ceramics (6) it was found that early compression cycles cause significant damage, i.e., microcracks
which merge to form fatigue flaws after tens of thousands of cycles. These tests, with SiC whiskers
reinforcing Si3Ny, show the silicon carbide fibers lowered the fatigue resistance of unreinforced
matrix.

Slippage between the fiber and the matrix at higher stress levels after crack initiation will probably
lead to further fatigue damage. In addition, the cracking opens the way for further environmental
damage to the reinforcing fiber, due to oxidation as discussed above.

Currently, the data base on fatigue limitations for ceramic composites is extremely limited.
However, it appears that for reasonable fatigue resistance the design stress may have to be limited
to a value below the matrix cracking stress which is significantly below the ultimate stress; perhaps
as low as 2/3 the ultimate strength. Currently, design guides for ceramic materials are based
primarily on strength and tou ghness considerations but fatigue concerns must be added to achieve
a valid design analysis.

Oxidation

Ceramic matrix composites are subject to limitations due to oxidation and other environmental
degradation at high temperatures. Most of the discussion presented in the section on carbon/carbon
applies to ceramics. Protection of the reinforcing fiber after micro-matrix cracking is an additional
complication where an environmentally sensitive reinforcing fiber is used while relying on the
protective qualities of the matrix. For gas turbine applications a goal for linear recession rate has
been established at less than 0. 1 pm/hr. (4) This implies a loss of 4 mils in 1000 hour which would
likely be unacceptable for a temperature sensor application over that period. It would probably be
acceptable, however, for 100 hours use (0.4 mils) which would be a reasonable life for a laboratory
instrument.

Strength

From the standpoint of temperature sensor application, thermal transients and the resulting
internal, material temperature gradients will produce the maximum stresses. As with metals and
alloys, polycrystalline ceramics lose strength rapidly with increasing temperature. Since grain
boundaries are an important factor in yielding of these materials, consideration should be givento
using single crystals, especially for minjature sensors. Gains due to the use of single crystals will
still be compromised by the need for at least one diffusion bond because of the need for internal

access to create the temperature sensor flow passages.

Polycrystalline considerations are also important because of diffusion-controlled processes.
Impurities can cause a glassy phase to form at grain boundaries at high temperatures. These glassy
boundaries allow interfacial slippage between crystals and greatly compromise the basic material
strength. This is another reason to consider the fabrication of small devices from single crystal
materials.
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Material Candidates

The Air Force programs studied several classes of materials for their potential use as both bulk
matrix and reinforcing elements. These included:

Beryllides

Borides

Carbides

Nitrides

Oxides

Silicides
In addition to looking at the tensile strength, elastic modulus and creep resistance of these
materials, consideration was given to thermochemical compatibility. For composites, the details of
the bond between the reinforcing fiber and its host matrix are extremely important. As discussed
earlier, toughness issues seek a relatively weak interfacial bond and minimal thermochemical

activity at the bond. Optimizing the composite properties often involves coating the fibers or
otherwise modifying its surface.

The Air Force studies concentrated on three general classes of reinforcement/matrix:

non-oxide/non-oxide
oxide/oxide
non-oxide/oxide.

For use in an oxidizing environment, protecting materials from oxidizing reactions has proven to
be a real struggle. For example, carbon is unique among all materials in its increasing strength with
increasing temperature. However, as discussed in the preceding section, the oxidation resistance of
carbon is unacceptable and no satisfactory protection method has yet been developed. Without
going into a detailed report of all of the materials reviewed, we quote the Air Force assessment
report (4) which, after 6 years of effort, concludes: “For long term applications, only oxide/oxide
composites will be able to survive in oxidizing environments.”

While this determination was based on the requirements of gas turbine engines, it is likely a valid
conclusion for temperature sensor applications also. While the temperature sensor is not subject to
the stresses of rotational loading, even a useful laboratory instrument will be subjected to many
thermal cycles. It is this cycling that creates the most difficult problems for the oxidation protection
systems that have been proposed and investigated to this time.

Long Term Material

In general, single crystal oxide fibers appear to offer the most promise although some hope for
silicon carbide exists among investigators in the field. The results of many of the material tests
appear to suffer from the impurities found in commercial- grade materials and a proper assessment
of silicon carbide cannot be made until high temperature strength properties can be made to
approach theoretical values. Silicon carbide survives at high temperatures because of the formation
of a SiO; scale which protects the base material from oxygen permeation. Survival of this scale in
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the presence of a flowing fluid is an issue to face when evaluating silicon carbide for temperature
sensor fabrication. Since the sensor will likely operate behind a normal shock at high flight
velocities, the worst case from the standpoint of scrubbing the protective oxide layer will probably
occur at M = 1.0 and high gas density. Higher Mach numbers produce a stronger shock with a
resulting lower velocity behind the shock.

Air Force studies highlighted BeO, Al;03 and YAG (yttria aluminum garnet) in single crystal fiber
configuration as capable of achieving acceptable creep rates for use in gas turbine engines. When
fabricated into composites, however, some loss of single crystal properties occurs. A eutectic

composed of AlLO3/YAG is highlighted as promising, in reference 4, with the caution that fracture
toughness needs to be improved.

Conclusions regarding the flow effect on material survival must be drawn with caution. While
protective oxide scales are scrubbed away by high velocity gas flows, work by Man Labs Inc. has
shown that some refractory diborides recede at 10 times the rate in furnace tests as compared to
tests in a high velocity plasma. This is believed to be due to the effects of reaction time limitation
and temperature gradients in a flowing environment.(4, Appendix F) In any event, this illustrative
of experimental departure from intuitive expectation.

Materials For Short Term Use

For a lifetime less than 5 hours, reinforcing fibers of silicon carbide in a hafnium diboride matrix
show some promise. This combination shows good strength and thermal shock resistance at room
temperature but for all these systems there is a striking lack of fatigue data and most fracture
toughness data are quoted only at room temperature. With these caveats, however, the SiC/HfB,
system can withstand temperatures in excess of 2000 °C (3630 °F) for short periods of time.

Chemical Vapor Deposited (CVD) silicon nitride “has a chance” for surviving service at 3500 °F
for 5 to 10 hours.(7) Si3N4 develops a protective coating of silica at high temperatures which limits
oxidation. The CVD method of preparing the material avoids the formation of glassy boundaries
which form between grains of material prepared by hot pressed sintering, thus crippling creep
resistance of the material.

Outstanding properties of CVD silicon nitride include its hardness, high purity and resistance to
chemical attack. The manufacturer, Praxair Surface Technologies Inc. (formerly Union Carbide
Co.) recommends Si3Ny as a structural material for use in aggressive environments. SigNg4
evaporates at high temperatures. It has a vapor pressure of approximately 1 torr at 1450 °C (2640
°F).(8) No data are available on vapor pressure at temperatures significant to temperature sensor

applications.

CVD deposit of SizNy creates a fairly rough, crystalline surface which must be ground smooth if
required for a specific application. No information was obtained on fabrication techniques or
capability for diffusion bonding. It may be possible to construct a male model of internal
temperature Sensor passages (mandrel) and deposit a closed Si3Ny structure around it to be
removed by chemical means upon completion.

Despite extensive research work done over the past two decades, many deficiencies in the data
exist. This can be seen in table 2, reproduced directly from reference 4. While this table nicely
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summarizes the properties of ceramic composites being considered for gas turbine applications,
there are many important missing parameters as indicated by a “U.”

Refractory Metals

General properties of all potential materials for use in a temperature sensor and allied
instrumentation considerations make cooling of the sensor imperative. After review of many exotic
composites, the cooling requirement makes the higher thermal conductivity of metals an attractive
option.

Molybdenum, tungsten, niobium, tantalum, rhenium and hafnium and their solid-solution alloys
are most often mentioned in material literature. Each of these metals has its strengths and
weaknesses, but some of the weaknesses can be overcome by alloying.

Tendency toward oxidation is an unfortunate weakness for all of them. For example, above about
1100 °C (2000 °F) molybdenum oxidizes to form MoQ3; niobium forms NbyOs; and tantalum
oxidizes rapidly to form Ta;Os. In addition, Nb,Os is liquid above about 1450 °C (2600 °F). As a
result, for use in a fluid temperature sensor application, refractory metals require protection unless
the sensor structure is restrained to temperatures below their oxidation critical levels.

Tungsten has the highest melting point of any metal: 3410 °C (6170 °F) and is among the most
dense. However, serious oxidation occurs above about 400-500 °C (750-930 °F). For temperature
sensor fabrication, its high density and high thermal conductivity would aid in absorbing high
temperature transients and moving thermal energy away from hot spots in the structure. Unalloyed
tungsten is brittle at room temperature, but its ductility is improved by working and deforming. For
example, a hot-worked tungsten bar is brittle at room temperature, but heavily worked tungsten
wire is markedly more ductile.

The addition of thenium to tungsten creates an alloy with significantly better ductility. W-Re alloys
are significantly stronger than unalloyed tungsten. The rhenium also increases resistance to thermal
shock and thermal fatigue. Unlike other alloys of tungsten, dispersion-strengthened W-Re alloys
are only now nearing commercialization. The addition of hafnium carbide to the W-Re resultsina
material that is among the strongest ever produced for temperatures up to 2000 °C (3630 °F).

Thoriated tungsten, dispersion-strengthened with ThO,, increases the high temperature strength of
unalloyed tungsten resulting in a maximum temperature capability several hundred degrees higher.
Thoriated tungsten is commercially available. It is used for forged valve bodies in spacecraft
attitude control systems and other high-temperature acrospace components.

Tantalum is the most corrosion resistant of the refractory metals at moderate temperatures (about
150 °C or 300 °F). This corrosion resistance results from the formation of a thin oxide coating,
which, because it is relatively thin, is a suitable heat transfer surface. However, it cannot be used
at temperatures above about 260 °C (500 °F) in an oxidizing atmosphere without a protective
coating. Its heat transfer coefficient ranges from about 1/3 to 1/2 that of tungsten at temperatures
up to 2527 °C (4580 °F).

Lockheed Missiles and Space Co. Inc. reports successful use of niobium and tantalum alloys at
1600 °C (2900 °F) using a silicide protective coating.(9) Niobium C103, composed of niobium,
10% hafnium, and 1% titanium, will function at 1600 °C and is capable of diffusion bonding. The
silicide coating was reported as competent in the presence of thermal cycling.
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Silicide coatings encounter the same problems described in the discussions of carbon/carbon
protective systems. Defects in the coating allow infiltration of oxygen to the metal substrate. The
most significant defects in the silicide coatings result from fissures formed during thermal cycling
due to the mismatch of the coefficient of thermal expansion. While the coating lifetime is reported
to be in the hundreds of hours, up to temperatures of 1500 °C (2700 °F), expected service is
“substantially less” in the presence of thermal cycling.(10)

PRESSURE TRANSDUCERS

In the 25 years since the original NASA fluid temperature sensor program, pressure transducer
technology has advanced in some ways but not in directions which enhance use as a temperature
sensor read-out device. The Kistler organization has eliminated the 601L transducer, used on
previous sensors, from its line of standard products. Its 540 °C (1000 °F) ambient capability has
been replaced by a device limited to 260 °C (500 °F). Other manufacturers of piezoelectric
transducers, by using miniature integrated circuits, have incorporated the amplifier electronics into
the transducer body itself. This limits the environmental temperature of the transducer to the
temperature capability of the solid state electronic components rather than the limit imposed by the
quartz piezoelectric element.

A new piezoelectric material has appeared which has a Curie temperature greater than 600 °C
(1112 °F). This product, manufactured by Keramos Inc., is designated Kézite K15 and is a
piezoelectric ceramic. Keramos does not manufacturer pressure transducers, only the raw ceramic
material. In our search for high temperature, high frequency transducers, we encountered a
manufacturer of high power, driver transducers which convert an electric signal into mechanical
motion, but no pressure transducer manufacturers using the Kizite piezoceramic.

Piezoelectric Transducers

In general, piezoelectric transducers still hold the most promise for temperature sensor
applications. The Kistler devices as used on the earlier program are still a nominally good solution.
New piezoelectric transducer suppliers have evolved and show more enthusiasm for working
“special problems” than “everything-we-have-is-in-our-catalog” attitude that has sometimes
prevailed in the past.

Potential Suppliers and Products

Kistler Instrument Corp. PCB Piezotronics Inc.
Model 6001 Model 105B02
Threshold psi 0.03 0.005
Pressure range psi 3,600 250
Natural frequency 150 KHz 250 KHz
Temperature range —-195 to +350 °C -100 to +250 °F
Diameter 0.219in. 0.099 in.
Length 0.58 in. 0.81 in.

The PCB device fits inside the diameter of a 10-32 screw (root diameter 0.140").
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Solid State Transducers

Solid state devices, primarily strain gauge bridge networks directly deposited on a silicon substrate,
have been highly developed. The resistance legs are laser trimmed to produce required design
characteristics and temperature compensation circuits are deposited on the chip along with the
bridge resistors. Unfortunately, most of these devices appear to have resonant natural frequencies
of approximately 3540 KHz. Based on data from reference 11, a fluid temperature sensor at
10,000 °R would be expected to have an output frequency of just over 100 KHz and even at 2000
°R, the output frequency is about 45 KHz. This characteristic alone would limit the usefulness of
the solid state devices, found in our search, to temperatures below about 1000 °R.

The Entran Corporation (Appendix C) produces (by special order) a small (0.14" diameter) silicon
device, protected with a stainless steel diaphragm, which can function at 500 °F. From a resonant
frequency standpoint this device would be useful to approximately 3000 °F and is worthy of
consideration for lower temperature operation simply because of its small size.

ANALYTICAL TIME RESPONSE STUDIES
Time Response

A major objective of this program is to drive the measurement capability of the acoustic sensor as
far as possible toward a 5540 °C (10,000 °F). Since one of the more attractive features of this
technique is its rapid time response, a short study was made of the effect of temperature, pressure
and various gases and gas compositions on sensor time response.

Acoustic sensor time response has two components:

1. An initial, flow-induced response related to the “flushing time” of the sensor cavity. This
is the time required for the fluid in the sensor to be replaced by a mass of fluid at a new
temperature and is in the millisecond range.

2. A sensor body mass time constant, which is a function not only of the flow through the
sensor, but also the sensor mass and thermal conductivity of the material, the flow field
around the sensor exterior, heat transfer characteristics of the internal and external flow
geometry and the cooling means used to allow the device to survive extremely high
temperatures.

Analytically these two components of the time response can be represented by the following
equation taken from reference 11:

T~ T, =1 Cl*e—t/t _ C2* e—t/‘t
T, - T,
where: T,, = Temperature of fluid inside sensor
T, = Initial temperature of body and fluid
T;, = Temperature of fluid to be measured (step change from T )

C, =K /(Ky +Kyp)
K, =c,melc,ms
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K, =hAgy/c,ms

t =time

T, =K, +K,)

T, =(K,+ KK K;)

Ky =hAgp/cgmg

h = convective heat transfer coefficient
cg = specific heat of sensor body material
mg = mass of sensor body

The first term of the equation can be quite easily computed if the mass flow rate through the sensor
is known. The second term, representing the body heating rate is much more difficult to estimate.
After a change in temperature, the body comes to some new temperature much more slowly than
the gas in the sensor cavities. The body is heated, not only by the internal flow in the cavities, but
also by external flow around the sensor body. The new equilibrium must include radiation losses
from the sensor body to any radiation shield and is also influenced by the flow through the radiation
shield.

At very high temperatures, the body temperature must be controlled to approximately 80% of the
melting temperature of the body material. Thus, above some material-dependent temperature, the
body temperature must be held constant by some liquid or cryogenic cooling means and the time
variable effect of body mass heating is negligible. However, the temperature gradient between the
sensor body and the mass of the fluid in the acoustic cavity would be limited to the boundary layer.
It may be necessary to remove the boundary-layer bias from the measured fluid temperature by
measuring the controlled body temperature and measure the bias with a calibration process.

The sensor time response was computed using a truncated version of equation (10) from reference

11, eliminating the third term which deals with the secondary body heating/cooling effects:
T,-T,

However, rather than using constant values for the specific heats of the gas in the sensor, the

specific heats were adjusted to account for changes with temperature.

Reference 1 gives tabular values for the specific heats of air and combustion products. They range
from 100—6400 °R for air and from 3004000 °R for 400% theoretical air combustion products. As
in the Knudsen number analysis, regression analysis was again used to determine the specific heats.

All other variables in the equation were formulated in terms of pressure and temperature so that the
effects of these environmental variables could be quickly assessed. Gas density and mass flow were
computed using the equation of state. The flow through the sensor was derived from the calibration
data shown in the following figure (fig. 6), reproduced from figure 12 of reference 11.
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Figure 6: Flow Calibration of Fluid Temperature Sensor

The data in this plot were subjected to a second-order multiple regression giving the following
relationship. This equation reproduces the data to a standard deviation of about 7 parts in 1000
(0.7%). Mass flow through the sensor in 1b./sec. is given by:

m,=0.0765 (6.16181E-03 + (2.16252 p) - (1.1251E-04 p?) (—4.9695E-06T) + (1.2752E-09 T?)-
(1.3823E-05 p T) (+1.162E-07 p2 T) + (3.8E-09 p T?) - (3.919E-11 T%))/60

The internal volume and surface areas of the sensor were estimated from the drawings included in
reference 11. The heat transfer coefficient range for forced convection, turbulent flow was taken
from Table XI, Chapter VIII of reference 1. From the spread sheet data four plots of sensor time
response were made:

1. Figure 7: Air at constant pressure with temperature varying from standard conditions to 6,400
°R

2. Figure 8: Air a constant temperature with pressure varying from standard conditions to 65 psia,
the highest pressure for the sensor mass flow data included in reference 11.

3. Figure 9: Air at standard conditions with variable heat transfer coefficient.
4. Figure 10: Air, 400% theoretical combustion products and argon at 40 psia and 910 ° R.

Inspection of these plots shows that, for a sensor with a controlled body temperature, increasing air
temperature results in an improved sensor time response, figure 7. The higher temperature results
in a higher velocity through choked-flow sections of the sensor allowing a more rapid replacement
of the fluid in the sensor body. It should be noted that this is opposite the result expected for a

passive, uncooled sensor where the body mass must be brought to a new temperature by both the
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interior flow and exterior flow around the sensor. For this condition, the lower density of the hi gher
temperature flow results in a decreased ability to transfer heat to or from the sensor body.

Pressure effects tend to lengthen the time response of the sensor but not significantly for the range
of pressure studied, figure 8. Again, this is the result for a sensor with a cooled body. For a passive
sensor, one without controlled body temperature, the increased pressure would increase gas density
and tend to improve the time response.

Varying the heat transfer coefficient by a factor of 5 shows a negligible effect. In a passive sensor,
time response would be expected to be approximately proportional to the heat transfer coefficient.
The results shown in figure 9 occur only because no attempts are being made to change the sensor
body to a new temperature.

Finally, figure 10 shows the results for different gases at 40 psia and 910 °R which is in the range
of gas turbine exhaust temperatures. As expected, there is little difference between air and the
400% theoretical air combustion products. Argon is included to compare the results for monatomic
with those for air.

Dissociation Effects

A limited effort was made to determine the effect of dissociation on temperature sensor
performance. The frequency of temperature sensor oscillation is a function of the speed of sound
of the gas within the instrument cavity. The speed of sound is, in turn, a function of the square root
of the absolute temperature of the gas. For past sensor configurations the temperature/frequency
relationship has ranged slightly, around the square root, ie.,

T = K, f18¢
to
T = K, f 2085

To explore effects which might be due to dissociation, the speed of sound was computed with Y=
constant = 1.4 and with y calculated from the C,/C, with the temperature relationship as defined
in the section on Knudsen number. The specific heat values were determined for absolute
temperatures ranging between 500° to 6400°, the highest values listed in reference 1. The results
are shown in figure 11. At 6400° the speed of sound computed by the two methods differs by about
3.5%. As the plot shows, the speed of sound relationship with temperature and with temperature
varying y shows slightly more curvature (power relationship slightly greater than 2). However the
relationship with y computed,y:

Value/1000 = Ky, 1716 T

is linear, despite the nonlinear relationship of C » and C, with temperature. K has been chosen
arbitrarily to make the value fit the chart.

In any event, none of the relationships show any breaks in curvature which might indicate
dissociative effects. The air data in reference 1 may not be carried toa sufficiently high temperature
or may simply need updating to include current experimental findings. The regularity and linearity
of the curves might mean that the tables of reference 1 are analytically determined and, as a result,
may not show real gas effects. This area needs further exploration using better data showing
dissociation effects.
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FABRICATION CAPABILITIES

As stated in our proposal, Cuyuna Corporation has only limited capability for fabricating
experimental sensors and supporting laboratory equipment. One item of the contract work
statement calls for exploring various means for building temperature sensor hardware. Five
avenues were surveyed: A major space equipment manufacturer A manufacturer of total
temperature sensors for aircraft, A manufacturer of flow research instrumentation, A small
engineering firm, An aeronautical instrument manufacturer. Formal presentations and subsequent
discussions were held with three of these organizations; one was contacted by telephone, and
information was exchanged by telefax and mail with one firm, located in England.

Lockheed Missiles and Space Co. Inc.

Telephone discussions were held with Dr. Jerry P. Wittenauer a Research Scientist with Lockheed.
He expressed an interest in working with Cuyuna in the development of applications for
Lockheed's high temperature materials. He stated that he has IR & D funds designated for this type
of activity in 1993. These funds could be applied in concert with future contract funding by
supporting work in specific problem areas related to temperature sensor fabrication. Wittenauer
later confirmed Lockheed's interest in writing.

Rosemount Inc., Aerospace Division

Rosemount Inc. was founded in 1956 by a group of scientists working at the Aeronautical Research
Laboratories of the University of Minnesota. The company's initial product was a temperature
sensor designed to accurately measure total temperature over a wide range of flight conditions.
Since that time Rosemount has expanded its range of products to include:

Pitot-static pressure

Flow angle

Angle of attack

Ice detection

Fuel and oil temperature

Engine inlet pressure and temperature

Cryogenic and surface temperature for space craft
Complete air data systems

Rosemount sensors now provided air data for most commercial and military jet aircraft worldwide.

A formal presentation was made to Mr. Donald Thompson, Director of Temperature Operations
for Rosemount Aerospace Division and several of his technical staff. Following a period of
evaluation Cuyuna was notified in writing that Rosemount would be willing to support Cuyuna's
hypersonic temperature sensor development. It will be necessary to develop a Statement of Work
defining the effort required of Rosemount and a working agreement between Cuyuna and
Rosemount.

Successful completion of these documents will provide NASA and Cuyuna access to all the
fabrication and laboratory facilities essential to proceeding beyond the current phase of the
temperature sensor program.

34



Schlumberger Industries Aerospace Division

Schlumberger Aerospace is an agglomeration of several instrumentation companies, including
Farnbourough Transducers, Weston Instruments, assembled to lend size and credibility for dealing
with major aircraft manufacturers. Several of these organizations have been relocated to
Farnbourough, England and placed under unified management. As a result of the contract notice
for the current contract, published in the Commerce Business Daily, we were contacted by JGW
International a Washington, DC firm representing Schlumberger Aerospace Division. Initial
contact sought to purchase Cuyuna's instrumentation products. When it was explained that no
products were currently being manufactured, succeeding contacts began to explore acquiring the
technology. Information and data from the old Honeywell reports were sent to Schlumberger and
contact continues at a relaxed level. The capability of Schlumberger Fambourough to support a
temperature sensor development program has not been assessed.

TSI Incorporated
A formal presentation was made to TSI Incorporated represented by:

Dr. Leroy M Fingerson, President and CEO
Mr. Gregory Vack, General Manager
Dr. Rajan Menon, Principal Engineer
Mr. Ralph Kiland, Principal Engineer

TSI Incorporated is a worldwide supplier of flow-oriented instrumentation for research and
industry. It was founded in 1961 and is headquartered in St. Paul, Minnesota with subsidiaries in
Sunnyvale, California and Germany. The principals of TSI and Cuyuna Corporation have shared
professional working relationships for over 25 years.

TST's origins lie in hot wire instrumentation for aerodynamic and other flow research. The company
now designs and manufactures sensors and instrumentation systems for:

Velocity, flow and other characteristics of fluids
Small particles suspended in fluids (contamination or pollution)
Meteorological measurements (atmospheric and environmental)

TST's expertise includes laser light scattering techniques including laser velocimetery, fiber optics,
high speed electronics, complex sensor fabrication and specialized software. TSI was chosen
because one of its focal markets is the research community: universities, government (including
NASA) and industrial laboratories are among its customers. The company's staff is thoroughly
familiar with building research instrumentation in small quantities for specialized needs.

After several weeks of internal evaluation, TSI has informed us that it cannot support Cuyuna
Corporation's development of an improved hypersonic temperature sensor. Several years ago, TSI
embarked on an aggressive market diversification program and is reluctant to divert from its chosen
development areas to undertake an additional technical area.

Volna Engineering Inc.

Several formal discussions were held with Mr. William Volna, President of Volna Engineering.
Volna Engineering is a small, highly technical development shop run by a graduate mechanical
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engineer. For more than twenty years, Volna has built solar trackers, precision instrumentation and
specialized test equipment for DOD and industrial users under sub-contracts from a variety of
prime contractors. The company has broad capability for fabricating parts and equipment using
conventional machining methods. It would be ideally suited to build experimental temperature
SENsors.

Volna's main disadvantage is its limited availability due to current workload. The company's
capabilities are vested in its President and owner and are not easily multiplied to the same high
order skills displayed in past projects.

CONCLUSIONS

Pressure Transducers

Transducer technology has not advanced relative to high temperature capability. Effective cooling
will be required to get information out of the sensor via pressure sensing techniques. As a result,
all the difficult design compromises of the earlier programs persist. In essence, this means
balancing signal pulse strength, pressure port length, transducer sensitivity and transducer cooling
details. It may be possible to take quick, short-term measurements using a simple, uncooled sensor
built from a heavy, high-heat-capacity material. For long-term measurements, cooling the
transducer area will be essential.

Materials

Material developments have not advanced high-temperature materials to a level which will permit
the fabrication of an fluid temperature sensor whose oscillation cavity operates at 5,500 °C (10,000
°F) without cooling. It may be possible to build a simple, uncooled oscillator cavity for long term
operation up to 1650 °C (3000 °F). For 5-10 hour life in a cycling environment some materials
may allow use of an uncooled cavity to temperatures of approximately 1900-2200 °C (3500-4000
°F). As discussed above, it would still be necessary to strategically locate the pressure transducer
or cool it, or both.

For measurements to 10,000 °F, designs based on refractory metals, having reasonable oxidation
resistance, should be explored. Since both the pressure transducer and the temperature sensor body
must be cooled at the higher temperatures, consideration should be given to holding the entire
system below the oxidation temperature of the sensor material. Because the sensor internal design
involves stagnation of the flow at some points, the development of “hot spots” is a real threat to
long life of the sensor cavity. The high thermal conductivity of metals compared to that of most
ceramics should aid in relieving the tendency to concentrate heat at discrete points.

No thermodynamic design studies were conducted, but efficient cooling of the oscillator cavity
may offer the best hope for an ultra-high-temperature sensor based on fluid techniques. Such a
design would involve a network of cooling passages with liquid or cryogenic gases flowing
through the body structure. The coolant would be discharged overboard, downstream of the inlet
port, so as to not affect the measurement by foreign gas contamination.

Rarefied Gas Effects

For use in the flight environment, rarefied gas effects are less severe than expected in the high Mach
numbers. Analysis of the Knudsen number behavior showed that the worst effects (approach to
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slip-flow) occurred at Mach = 1. At higher Mach numbers, the stronger shocks resulted in lower
velocities behind the shock and combined with other effects, maintained a nearly constant
Reynolds number component of the Knudsen number.

Fabrication Capability

Cuyuna's limited facilities require augmentation to fabricate and test developmental temperature
sensors. This can be accomplished either by internal enhancement or joining with a company
having the needed facilities. A variety of potential joint venture candidates were surveyed to
determine interest and capability. Candidates ranged from a small developmental engineering
company to a major acrospace firm. Two written expressions of interest in participation were

received one from Rosemount Incorporated and one from Lockheed Missiles and Space Co. Inc.
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APPENDIX A

A Short History of Fluid Temperature Sensors
Early Work

The fluid amplifier concept originated at the Army’s Harry Diamond Laboratories in the early
1960s and by 1964 a variety of concepts and configurations had evolved. The Laboratory’s work
included some of the earliest known work on the use of fluid oscillator concepts for measuring
temperature. References 1 and 2 cite temperature measuring work dating to 1964 and 1965.

Honeywell Developments

In 1960 Honeywell purchased licenses to fluid amplifier technalogy and started a fluid mechanic
laboratory to research the basic operating principles of these devices and to develop products
incorporating air and liquids as the working medium. One of the areas of focus was the
temperature oscillator.

By 1964, under the contractual sponsorship of the Aero Propulsion Laboratory of Wright
Patterson Air Force Base, Honeywell’s temperature sensor work had progressed to the point
where a temperature oscillator was incorporated into the primary control loop of a General
Electric J85-5 jet engine.

In other areas, Honeywell developed a fluid angular rate sensor, which had no moving parts. In
1963, combined with other fluid amplification devices, the fluid rate sensor was the heart of a
control system used to fly a demonstration missile flight with compressed air as the working
medium and no electronics. This program was sponsored by the Army. The fluid rate sensor
operating on oil was also used in a hydraulic, single axis rate damping system for helicopters. In
general, the driving force behind this technology was simplicity, high temperature environment
and immunity to the nuclear electromagnetic pulse.

NASA Sponsored Work

In 1965 NASA Ames Laboratory contracted with Honeywell for a series of research programs
to explore the potential of fluid oscillators for temperature sensing in various hypersonic wind
tunnel applications. The Air Force sponsored work for jet engine measurements had resulted
in relatively large devices. Because one of NASA’s prime interests was in boundary layer
measurements, the work concentrated on miniaturization.

Earlier work was used as a starting point but the difficulties of small size soon became apparent:
* Viscous losses in small passages attenuated the magnitude of the pressure pulses
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* Signal wave forms were distorted and dominated by noise at higher total pressure levels

* Machining tolerances became critical and surface finishes better than 15 microinches
were required on all internal flow passages

* Diffusion bonding became the only feasible means of assemblyso this imposed another
overriding requirement on material selection in addition to the already severe
environmental requirements. At these temperatures, adhesives were out of the
question and welding introduced undesirable thermal stresses inrelatively brittle
materials.Ultimately these problem areas were overcome with engineering com-
promises which resulted in a number of successful instruments.

Three temperature probes delivered under the contract; two “low temperature” (temperatures
t02300deg. R), designated Probe A and B, and a high temperature version capable of operation
at 3500 deg. R. The low temperature probes are shown in figure A-1 (Probe A) and figure A-
2 (Probe B). The two low temperature probes had the same internal oscillator configuration
figure A-3, except for the signal tube exit which had to conform to either a straight or a swept
back pylon. The high temperature probe is shown in figure A-4 along with it’s internal
dimensions figure A-5.

Geometric Compromise

The probe internal geometry was developed using a a variable geometry model which could be
clamped together for rapid configuration changes. Selection of the optimum exit orifice
location was dictated by signal waveform shape and signal-to-noise ratio which are major
indicators of oscillatior performance. Exit orifice size and location coupled with transducer
sensitivity and location were the prime parameters investigated. They were investigated over
a wide range of inlet pressures.

While some research measurements showed that oscillation could be maintained down to
absolute pressures of 0.1 psia the practical lower limit for these wind tunnel applications was
about 1.0 psia. Transducer sensitivity available in 1967 resulted in a capability to detect
oscillations at 4.5 psia for Probe A and to 1.3 psia for Probe B. A typical characteristic plot, taken
from a Probe B configuration, is shown in figure A-6.

Final configurations resulted from a balancing of thermal, mechanical and pressure measure-
ment considerations. In general, more sensitive pressure transducers also exhibit temperature
interactions so must be cooled and/or located farther from the oscillator. Internal passage
length attenuates the pressure signal, limiting the distance the transducer between the transducer
and oscillator. Smaller oscillators give lower pressure pulses, simply because there is less total
energy in the flow. Transducer developments since the mid 1960s might change the design
optimizations and result in temperature sensors with better performance and extended range
of operation.



Low Temperature Probe A, Assembled and Disassembled
Figure A-1

A3



<
Low Temperature Probe B, Assembled and Disassembled -
Figure A-2
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High Temperature Probe C, Assembled and Disassembled

Figure A-4
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Material and Fabrication Considerations

While the fundamental consideration in choosing a material for the temperature oscillators was
the temperature environment, the means of fabrication also played into the material choice.
Considerable effort was expended in an attempt to weld the sensor components into a
monolithic assembly. Thus, weldability and a tendency to distort under thermally induced
welding stresses were initially a major factor in material selection. Despite a great deal of effort
in this area, diffusion bonding ultimately proved to be the only practical means of assembly and
capability for diffusion bonding was an important material selection criterion.

The low temperature and high temperature sensors were built from different materials. The
low temperature (up to 2300 deg.R) sensors were designed for long term (100 hours) service.
The high temperature probes (to 4500 deg.R) were designed to function for only ten minutes.

Low Temperature Probes
The following materials were given close scrutiny for use in the low temperature application:

* Stainless steels of various compositions
* Thoria Dispersed Nichrome

* Inconel X

* Inconel 702

* Nickel

* Multimet

* Chrome 30

* Hasteloy X

Samples of appropriate shape were tested in flames produced by either a Linde jet piercing
torch, fueled with oxygen and kerosene, or an oxyacetylene torch. Of the materials tested, only
TD Nichrome and Chrome 30 showed adequate stability for long term servce. However, at the
time, the TD Nichrome was in early development and not available in sufficient quantities. The
delivery schedule for the low temperature probes prevented selection of the Chrome 30
because its machining characteristics and diffusion bonding capability had not been sufficiently
explored.

Inconel 702 was chosen for the low temperature probes although the rate of oxidation curves
from the torch testing showed the approach of adverse changes at the 100 hour point. Inconel
702 was readily machinable, weldable and diffusion bonding development with the material
proved successful.

High Temperature Probes

The high temperature probes were intended for use in blow-down wind tunnels which brought
the aspect of thermal shock into the material selection process. Blunted wedges, the shape of
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concern in the temperature oscillator, were exposed to the torch testing under cyclic conditions;
10 second exposure for 60+ cycles. The cyclic testing along with 10 minute exposure at 3500
deg.R was used to determine suitable materials.

These tests isolated Chrome 30 as the only material suitable for the high temperature probes.
While Chrome 30 would not survive operation at 4500 deg.R, laboratory testing showed ittobe
satisfactory at 3500 deg.R. Fabrication was difficult... Chrome 30is brittle and extreme care was
required in handling the small parts through the many grinding and surfacing operations
required for successful diffusion bonding of the tiny parts. Five separate diffusion bonding
operations were required for the complete assembly.

Performance

The various limitations of the testing process in the laboratory lead to a series of compromises
in the calibration process. The curves of frequency vs inlet total temperature as shown in figure
A-6 for Probe B were fitted with an empirical equation resulting in a straight line plot of nominal
values as shown in figure A-7. These lines were then regarded as “nominal values” and the
accuracy of a given probe was treated as the percentage difference between calculated
temperature for the probe. The results are shown in Table A-1

Percent Errors Between Nominal And Calculated

Temperatures For Probe B
Inlet Pressure range 7.5 To 80 psia
Temperature Error Temperature Error
Degrees R Percent DegreesR Percent
535 0 1710 1.58
910 0.77 1910 0.58
1110 0.13 2110 0.14
1510 1.00

A similar log log plot of the high temperature probe characteristic is shown in figure A-8, valid
for inlet total pressures between 0.5 and 2.0 atmospheres. Performance for two different high
temperature probes is shown in figure A-9. These data were measured in the NASA Ames 3.5
foot hypersonic wind tunnel.The plot compares data from the fluid temperature probes with
data from a triple shielded, Rosemount Engineering Corporation platinum/platinum-rhodium
thermocouple. The fluctuations in temperature values measured by the fluid probe are
attributed to the more rapid response of the fluid probe as compared to the more damped
thermocouple response.
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X-15 TEMPERATURE PROBE

The operating conditions of X-15 aircraft dictated an entirely different design philosophy for the
fluid temperature probe to be used in flight operations. The flight environment allowed a flow-
through design while maintaining a choked flow downstream of the sensor cavity. Air whose
temperature is to be measured enters the sensor through a small orifice in the forward
stagnation region and exits into the base region, figures A-10 and A-11.

In flight, heat is transferred from the hot air to the sensor body and, as a result, the sensor must
be cooled to maintain its integrity. Nitrogen gas is passed through the sensor body, entering
through the mounting pylon and dumped overboard in a low pressure region around the sensor.
The nitrogen is not permitted to mix with the incoming flow.

The cooled sensor body also cools the flow whose temperature is to be measured. This requires
that a correction factor to be applied to the basic frequency measurement. The correction
factor is a function of the body temperature which was measured with a chromel-alumel
thermocouple located at the rear of the body cavity as shown in figure A-10.
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coolant flow exit slots

coolant fitting

lateky wire screws

end plate

X-15 Probe, Assembled and Disassembled
Figure A-11
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APPENDIX C
SOURCES OF CARBON/CARBON MATERIALS

The following is a list of suppliers/fabricators of carbon/carbon composite materials.

B.P. Chemical
Garden Grove, CA
Norbert Meyer 213 516 5770

Fiber Materials Inc.
Biddeford, ME
Jack Smith 207 282 5911

B.F. Goodrich
Santa Fe Springs, CA
William Pfeifer 213944 6244

Kaiser Aerotech
San Leandro, CA
H.O. Davis 415 562 2456

Rohr Corporation
San Diego, CA
Thomas Spamer 619 691 3193

RTAC
Magna, UT
Perry Bruno 801 251 1390

Science Applications International
Santa Ana, CA
No contact 714 542 9411

Textron Specialty Materials
Lowell, MA
Arthur Taverna 508 567 2438






APPENDIX D

PRESSURE TRANSDUCER MANUFACTURERS

The following is a list of pressure sensor manufacturers contacted with regard to high temperature,
high frequency response transducers with maximum sensitivity.

A.L. Design
1411 Military Road
Buffalo, NY 14217-1305

Barksdale Controls Division
IMO Industries, Inc.

3211 Fruitland Avenue

Los Angeles, CA 90058

Channel Industries
839-T Ward Drive
Santa Barbara, CA 93102

Daytran Instruments, Inc.
21592 Marilla St.
Chatsworth, CA 91311

Entran Sensors & Electronics
10Washignton Avenue
Fairfield, NJ 07004

Etalon Inc.

104 N. Church Street
Box 40

Lizton, IN 46149

IMO Industries Inc.

CEC Instruments Division
955 Overland Court

P.O. Box 901
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